Segment Routing: A Game-Changer for Predicting Network Latency
What is Segment Routing (SR)?
Traffic Data Between Routers:
Source Destination Latency Bandwidth_Utilization
0 R1 R2 10 0.3
1 R1 R3 20 0.7
2 R2 R3 15 0.4
3 R2 R4 25 0.6
4 R3 R4 10 0.2
5 R3 R5 30 0.5
6 R4 R5 20 0.3
7 R4 R6 15 0.4
8 R5 R6 25 0.6
9 R5 R1 35 0.7
Summary Statistics:
Latency Bandwidth_Utilization
count 10.00000 10.000000
mean 20.50000 0.470000
std 8.31665 0.176698
min 10.00000 0.200000
25% 15.00000 0.325000
50% 20.00000 0.450000
75% 25.00000 0.600000
max 35.00000 0.700000from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# Feature selection
X = traffic_df[["Latency", "Bandwidth_Utilization"]]
y = traffic_df["Latency"] # Predicting future latency as a proxy for congestion
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train model
model = RandomForestRegressor()
model.fit(X_train, y_train)
# Predict future latency
y_pred = model.predict(X_test)
print(f"Prediction Error (MSE): {mean_squared_error(y_test, y_pred)}")
Prediction Error (MSE): 4.066250000000004
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
# Plot actual vs. predicted values
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred, alpha=0.7, color="blue", label="Predicted vs Actual")
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color="red", linewidth=2, label="Ideal Prediction Line")
plt.title("Actual vs Predicted Latency")
plt.xlabel("Actual Latency")
plt.ylabel("Predicted Latency")
plt.legend()
plt.grid(True)
plt.show()# Residual Plot
residuals = y_test - y_pred
plt.figure(figsize=(10, 6))
sns.histplot(residuals, kde=True, bins=20, color="purple", alpha=0.7)
plt.title("Residuals Distribution")
plt.xlabel("Residual (Actual - Predicted)")
plt.ylabel("Frequency")
plt.grid(True)
plt.show()
Segment Routing (SR) makes it easy to predict and monitor latency across network nodes by putting path information directly in the packet headers. In an SR network, packets carry a list of segments which define the explicit path they must take through the network. This allows network operators to measure and predict latency for specific paths without complex signaling protocols. By defining segments as specific links, nodes or services, SR allows traffic to take predictable and controlled paths and avoid congested or high latency areas. SR also integrates with telemetry systems to collect real time performance metrics like latency. This data can be used to model and forecast latency for different nodes or paths, to do proactive traffic engineering, SLA management and network performance optimization.
Comments
Post a Comment